A Spiking Neural Network in sEMG Feature Extraction

نویسندگان

  • Sergey Lobov
  • Vasiliy Mironov
  • Innokentiy Kastalskiy
  • Victor B. Kazantsev
چکیده

We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...

متن کامل

Development of a Myoelectric Controller based on Knee Angle Estimation

This paper presents the development of a bioinstrumentation system for the acquisition and pre-processing of surface electromyographic (SEMG) signals, as well as the proposal of a myoelectric controller for leg prostheses, using algorithms for feature extraction and classification of myoelectric patterns. The implemented microcontrolled bioinstrumentation system is capable of recording up to fo...

متن کامل

Feature Extraction for Emg Based Prostheses Control

The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG) signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as timeand frequency-domain properties. Time series analysis using Auto Regressive (AR) model and Mean frequency which is tolerant to white Gaussian noise are used as feature ext...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015